
national accelerator laboratory NAL-Pub-74/23-THY 
February 1974 

Obtaining Real Parts of Scattering Amplitudes Directly 
From Cross Section Data Using Derivative Analyticity Relations 

J. B. BRONZAN” 
National Accelerator Laboratory, Batavia, Illinois 60510 

and 

G. L. KANE and UDAY P. SUKHATME”” 
Physics Department, University of Michigan, Ann AIrbar, Michigan 48104 

ABSTRACT 

We show that one can obtain real parts of scattering amplitudes 

by knowing the imaginary parts at only nearby energies. This is accomp- 

lished by re-casting the dispersion integral into an equivalent form which 

we will call a “derivative analyticity relation”. Predictions are given 

for forward amplitudes where crT is measured: pp, pp. K*p, a*p, yp. 

We deduce the real part of the elastic pp amplitude away from the 

forward direction at ISR energies. 
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Theory 

Dispersion relations give the real part of an amplitude in terms of 

an integral over its imaginary part. Because the connection is nonlocal, 

the real part at high energy appears to depend upon the behavior of the 

imaginary part at all energies. We will show that at high energy this 

cumbersome nonlocal connection can be replaced by a quasilocal relation 

in which the real part is given in terms of the imaginary part and its 

derivatives at the same energy. Comparing our “derivative analyticity 

relation” with available data for forward scattering, we will demonstrate 

that it is easy to apply and very useful at least down to resonance energies. 

We will also apply the quasilocal i-elation to the relatively untouched sub-, 

ject of the phase of amplitutles with t k 0. 

We derive our relation for an even (crossing symmetric) amplitude 

f+ (with poles and subtraction constant removed for simplicity). This 

amplitude [normalized so that 
f 

so 
T 

= Imf+(s,o) ] satisfies the subtracted 

dispersion relation 
m 

2s2 p 
Re f+(s,t) = - ds’ 

Tr 2 
s’(s’ -S2) 

Imf+ (sl,t). 

sO 

Integrate by parts and replace s(st) by e*(e”), 

(1) 

m 

Ref+(s,t)= f 
’ Q-i 

I [ 
d5 s’ ‘1ncoth I~;~“](~-~+~) lmy:I”t) * (2) 

ensO 
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The kernel in brackets is positive, peaked at 5 = 5’ and decreases like 

2e-lE’-51 for lcl-{j large. At this point we expand Imf+ (~1, t)/sla 

in powers of 5’ - 5, and exchange order of integration and summation; 

since energy is large we also extend the lower limit to -CO . After some 

manipulation, we obtain the derivative analyticity relation (1,2) 

Ref+(s,t)=s@tan [; [a-l+&)] Irn>(“t) 

(3) 

=tan[Jj (o-i)] 1mf+(s,t)+~sec2[~(~-l)]&Im~sJt)+... 

The analogous relation for odd (crossing antisymmetric) amplitudes 

is 

DeP I.2 c, _ aa+?- TK, p+ zk ) 1 Imf- (s,t) llczL - ‘“1 L ’ - ca1a cy 
=tan y Imf-(s,t)+ v 

c ) 
a sec2~~j~(“‘r:s’t’~~;.. 

A number of points can be made about Eqs. (3) and (4). 

(1) A careful selection of the parameter a is unnecessary. 

For example, suppose we choose a=l, which is appropriate for the 

Pomeranchukon at t =O. Then if Imf+ *se, the leading term,in-Eq. (3) 

is 22% low when :=3/Z. This point can be put slightly differently: 

when Eq. (3) (with a=i) is applied to forward scattering, one can 

expect accuracy of a few percent even when secondary Regge exchanges 

are appreciable. 
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(2) Equations (3) and (4) are technically asymptotic (high energy) 

relations. Errors can be expected at low energy because the lower 

limit has been extended in Eq. (Z), because of other thresholds, and 

because of pole terms. 

(3) Only the first two terms in Eqs. (3) and (4) can be determined 

by contemporary data. Above the resonance region the first two terms 

yield good numerical accuracy except where the graph of Imf+ against 

In s is very curved. 

(4) In view of Eq. (3), the asymptotic behavior of Imf+ affects 

Ref+ primarily by changing the local value of df+/djns. Since this 

derivative can be obtained directly from the data, one can learn 

nothing about total cross sections at energies much above some point 

s by a measurement of Ref+ at s. 

In order to apply Eq. (4) for t + 0, we must face three problems. 

First crossing symmetric and antisymmetric amplitudes cannot be formed 

simply by combining cross section data. We bypass this problem by 

working at high energy where the Pomeranchukon, and hence, the even 

amplitude, dominates. This assumption presumably fails at diffraction 

minima, and our formulas will not be valid there. 

The second problem is that the only quantity measured at t i 0 is 

du/dt, and to apply Eq. (4) we must know the imaginary part. However, 

at ISR energies the diffraction peak is no longer shrinking much at large 

It 1, even though the minima are slowly moving. This suggests (Y = 1 
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and dominance by the imaginary part except at dips. We therefore 

have (Imf,)’ = 1 fX 1 ’ away from dips. his the collection of all helicity 

indices. 

The third problem is that spin cannot be ignored at t f 0. However, 

suppose we define pk(s) to be the fractional contribution of helicity 

channel A to d oldt. Using only the leading term in Eq. (3) we have 

d 
I5 - Pn 

do Re fX 

4 dins dt= c- ‘A Im f. (5) 

A h 

This formula gives the one piece of information about the phase of 

helicity amplitudes that can be extracted from doidt. 

Applications 

The results of a number of applications are given in the figures. 

In all the figures we have used an amplitude F related to f by 

4&F =f/s. At t=O wherever high energy cross sections are measured 

we have calculated the real part of the even amplitude implied by the energy 

dependence of total cross sections. 3,4 The results are shown in Fig. 1. 

Data is available for a*p and the agreement, while reasonable, could be 

better. 

To get ReF for the separate reactions we need the odd signature 

contribution also (except for yp which is purely even signature). We 

calculated ReF- from Eq. (4) by using the data directly and differentiating 

with respect to In s, and also by fitting Ao T with a power law AoT E 
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CT- 
T 

: oT(x-p) - GT(XfP) = cp-L;) ; the results are qualitatively 

the same. Our predictions are shown in Fig. 2. In all cases the real 

parts were computed from formulas 

ReF(X*p) = i [ReF+-t ReF-] 
(6) 

1 
^)- 

2 

where u 
* 
T E oT(X-p) f o.(X+p), with cy = 0.68 for mN, cy = 0.44 for KN 

and cr = 0.39 for NN. For even signature, where the errors on (r T are 

small, we expect rather small errors on ReF+, say iO-20%. Odd 

signature is not so well determined because Au 
T is not well measured. 

For r-p the agreement with the available data is not good. The 

separation between the x~*p curves is just due to the odd signature, and 

is large because the data for A cfT falls slowly with energy; it is not 

possible to have AoT be of significant size and fall slowly and also have 

equal real parts for rip. Which one of the **p curves agrees with data 

is determined by the even signature real part, whereas the separation 

depends on the odd. As it stands, the oT data, the higher energy real 

part data, and the derivative analyticity relations are not internally 

consistent, so one or more of them will change. Similar remarks hold 

for K*p. 

For yp scattering, we have retained an additional contribution 

(4rr/v)(-cu/mp), (V = laboratory energy of the photon) which corresponds 
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to the classical Thomson limit. The resulting real parts are in good 

agreement with previous dispersion relation calculations. 5 

In Fig. 3 we extrapolate the NN case to higher energies because 

of the current interest, in spite of the absence of measured ~7 T (PP ). 

We ass,ume that o,(pp) - uT (pp) continues to fall with energy as observed 

at Serpukhov. The total cross section data is shown, with some typical 

smooth curves, through the ISR data and/or through the recent NAL 

data in the region where there is some conflict. The agreement is less 

good for the curve through the NAL oT points since it must rise more 

quickly to get from the low Serpukhov data to the higher points at 200 

and 300 GeV/c. 6 

The good agreement of ReF calculated from Eq. (6) with the data 

down to a few GeV/c for the pp case where the measured ReF should be 

most reliable is a useful confirmation that nothing has been ignored in the 

theory. 
7 

Finally, we show in Fig. 4 the real part of the ISR elastic non-flip 

amplitude as a function of t. 
8 

We should have plotted the averaged ratio 

of Eq. (5). However, to facilitate interpretation we have neglected spin 

effects and lower lying contributions, assuming that above s = 1500 (GeV/c)‘, 

do/dt is dominated by the imaginary part of the hel,icity non-flip ampli- 

tude (except in the dip region). Two dashed lines in the figure show the 

logically possible ways to go between -t = 1 and the secondary maximum; 

the more positive one has an extra zero in ReF in the dip region. 9 
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Note that ReF will decrease a little faster than ImF with -t since 

it has a zero, so the Coulomb interference measurements which are in 

fact away from t = 0 will have a small correction; the actual ReF will be 

a little larger than the measured one, by perhaps two percent. 

The determination of the phase of the Pomeranchukon (via 

derivative analyticity relations) over a range of t adds a new tool in the 

analysis of hadron interactions. 
10 
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FIGURE CAPTIONS 
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The imaginary parts of the even signature amplitudes 

at t=O (i.e., oT ) are shown plotted as functions of 

In s. The even signature real parts for the various 

processes are shown calculated from the imaginary 

parts using the derivative analyticity relation 

ReF+ = a/ 2d oT/dln s [ Eq. (3)1 . Note that in the 

region s > 50 (G~V/C)~ where the rrN and KN even 

signature cross sections are essentially flat, one 

must have the even signature rrN and KN real parts 

essentially zero. Available data points are shown 

for the eN even signature real part. 

Predictions for real parts at t = 0 for separate 

reactions, obtained by taking odd signature real 

parts due to a fitted power law fall off for A oT 

and even signature real parts from Fig. 1 [ Eq. (6)l 

Note that the even signature real parts are approxi- 

mately between those for the separate reactions 

since Re(X*p) = Re(even signature) f Re (odd signature). 

% 
and t = 0 real parts as in the previous figures, 

extended to higher energies for NN reactions, 

assuming oT (jp) - oT (pp) continues to fall at 

higher energies as it does up to 60 GeV/c. The 
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Fig. 4 

solid lines are fn2s smooth curves through the 

ISR oT data, with associated real parts calculated 

from Eq. (9) (with ru = 0.39). The dashed and dotted 

oT lines are instead drawn through the recent NAL 

aT data, 
3 

and the dashed and dotted ReF lines 

show the resulting real part given our assumptions. 

This shows the real part of the elastic amplitude 

for t 2 0 at s 2000 (GeV/c)2 (i.e., the absolute 

phase of the Pomeranchukon) calculated from dim 

F/d Ins [Eq. (3)1. For - t 5 0.15 (GeV/c)2 and 

0.4 5 - t 5 1 (GeV/c)2 the result can be deduced 

from the data8 (with an uncertainity roughly indi- 

cated by the band. ) The box near - t = 0.2 (GeV/c)2 

shows the t range where the real part has a zero ( 

(i. e. , the imaginary part is not changing with energy). 

We have assumed that the cross section is dominated 

by ImF, with spin effects negligible for - t 5 1 (GeV/c)2. 

At the secondary maximum, the cross section appears 

to be again essentially energy independent; so if ImF 

dominates there then ReF has another zero there. 

The dashed lines from -t E 1 (G~V/C)~ out show two 

logically possible ways of getting to a zero near 

-t z 2 (GeV/c)2. 
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